
VideoGigaGAN: Towards Detail-rich Video Super-Resolution
Supplementary Material

This supplementary document includes additional quantitative results with SSIM scores, our network architecture, and
training and evaluation details.

A. Additional quantitative comparison
We include SSIM scores in Table 1. Similar to our conclusion in the main paper, our model achieves the lowest LPIPS error,
showing a detail-rich result.

BI degradation BD degradation

REDS4 [12] Vimeo-90K-T [16] Vid4 [9] UMD10 [17] Vimeo-90K-T Vid4

TOFlow [16] -/27.98/0.7990 -/33.08/0.9054 -/25.89/0.7651 -/36.26/0.9438 -/34.62/0.9212 -
RBPN [4] -/30.09/0.8590 -/37.07/0.9435 -/27.12/0.8180 -/38.66/0.9596 -/37.20/0.9458 -
PFNL [17] -/29.63/0.8502 -/36.14/0.9363 -/26.73/0.8029 -/38.74/0.9627 - -/27.16/0.8355
EDVR [15] 0.2097/31.05/0.8793 -/37.61/0.9489 -/27.35/0.8264 -/39.89/0.9686 -/37.81/0.9523 -/27.85/0.8503
MuCAN [7] 0.2162/30.88/0.8750 0.1523/37.32/0.9465 - - - -
BasicVSR [1] 0.2023/31.42/0.8909 0.1616/37.18/0.9450 0.2812/27.24/0.8251 0.1148/39.96/0.9694 0.1551/37.53/0.9498 0.2555/27.96/0.8553
IconVSR [1] 0.1939/31.67/0.8948 0.1587/37.47/0.9476 0.2739/27.39/0.8279 0.1152/40.03/0.9694 0.1531/37.84/0.9524 0.2462/28.04/0.8570
TTVSR [10] 0.1836/32.12/0.9021 - - 0.1112/40.41/0.9712 0.1507/37.92/0.9526 0.2381/28.40/0.8643
BasicVSR++ [2] 0.1786/32.39/0.9069 0.1506/37.79/0.9500 0.2627/27.79/0.8400 0.1131/40.72/0.9722 0.1440/38.21/ 0.9550 0.2390/ 29.04/0.8753
RVRT [8] 0.1727/32.74/0.9113 0.1502/38.15/ 0.9527 0.2500/27.99/0.8464 0.1100/40.90/0.9729 0.1465/38.59/ 0.9576 0.2219/29.54/0.8811

Ours 0.1582/30.46/0.8718 0.1120/35.97/0.9238 0.1925/26.78/0.8029 0.1060/36.57/0.9521 0.1129/35.30/0.9317 0.1832/27.04/0.8365

Table 1. Quantitative comparisons of VideoGigaGAN and previous VSR approaches. We report LPIPS↓/PSNR↑/SSIM↑. Similar to
our conclusion in the main paper, our model achieves the lowest LPIPS error, showing a detail-rich result.

B. Network architecture
B.1. GigaGAN upsampler

We show the configurationss of our GigaGAN upsampler in Table 2. For the low-pass filters, we use a kernel of 1
16 [1, 4, 6, 4, 1]

before the downsampling.

B.2. Flow-guided feature propagation module

We follow the architecture in BasicVSR++ [2]. We use SPyNet [13] as our flow estimator to reduce memory cost. For the
feature extraction, we use 5 residual blocks. The number of residual blocks for propagation is set to 7. The kernel size of the
deformable convolutional netowrk (DCN) is 3. We encourage readers to refer to BasicVSR++ [2] for more details.

C. Training and evaluation details

Datasets. Following previous works [1, 3], we use REDS [12] and Vimeo-90K [16] for training purpose. For REDS, we
use clips 000, 011, 015, 020 of the training set for testing, and clips 000, 001, 006, 017 are used for validation, the rest of the
clips are used for training. The ground truth has a resolution of 1280 × 720. For Vimeo-90K, in addition to its official test
set Vimeo-90-K, we use UDM10 [17] and Vid4 [9] for testing purpose. The ground truth has a resolution of 448× 256.
Degradation. We use MMagic’s [11] script for degradations - Bicubic (BI) and Blur Downsampling (BD). For BD, the
ground truth is blurred by a Gaussian filter with σ = 1.6, followed by a 4× subsampling.
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Table 2. GigaGAN model configurations

z dimension 512
w dimension 512
Mapping network layers 4
Activation LeakyReLU
G channel base 32768
G channel max 512
G # of filters N for adaptive kernel selection [1, 1, 1, 1, 1, 2, 4, 8, 16, 16, 16, 16]
G spatial self-attention resolutions [8, 16]
G temporal attention resolutions [8, 16, 32, 64]
G attention depth [2, 2, 2, 1]
G temporal attention window size 1
G temporal convolution kernel size 3
G # synthesis block per resolution [4, 4, 4, 4, 4, 4, 3]
G # downsampling blocks 3
D channel base 32768
D channel max 512
D attention depth [2, 2, 1]
D attention resolutions [8, 16]

G model size 369M
D model size 179M

Training settings. We use Adam optimizer [5] for training with a fixed learning rate of 5 × 10−5. During training, we
randomly crop a 64× 64 patch from each LR input frames at the same location. We use 10 frames of each video and a batch
size of 32 for training. The batch is distributed into 32 NVIDIA A100 GPUs. The total number of training iterations for each
model is 100, 000.
Test settings. During the testing, we use the full-frame of the videos. Particularly, for Vimeo-90K-T, we follow its tradition
and only evaluate PSNR, SSIM and LPIPS [18] on the center frame.
Metrics. We consider two aspects in our evaluation: per-frame quality and temporal consistency.

For per-frame quality, we use PSNR, SSIM, and LPIPS [18]. Except for REDS4, we evaluate PSNR and SSIM on
y-channel following previous works [1, 2, 10].

For temporal consistency, we use warping error Ewarp [6] and proposed referenced warping error Eref
warp. Please refer to

our main paper for the definition of Eref
warp. We use RAFT [14] as our flow estimator when computing temporal consistency.

D. More visual results
We encourage readers to refer to our project website more visual results.

https://videogigagan.github.io/
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