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Fig. 1: We present VideoGigaGAN, a generative video super-resolution model
that can upsample videos with high-frequency details while maintaining temporal
consistency. Top: we show the comparison of our approach with TTVSR [33] and
BasicVSR++ [7]. Our method produces temporally consistent videos with more
fine-grained detailed than previous methods. Bottom: our model can produce
high-quality videos with 8× super-resolution. Please see the video results on our
project page.

Abstract. Video super-resolution (VSR) approaches have shown im-
pressive temporal consistency in upsampled videos. However, these ap-
proaches tend to generate blurrier results than their image counterparts
as they are limited in their generative capability. This raises a fundamen-
tal question: can we extend the success of a generative image upsampler
to the VSR task while preserving the temporal consistency? We intro-
duce VideoGigaGAN, a new generative VSR model that can produce
videos with high-frequency details and temporal consistency. VideoGi-
gaGAN builds upon a large-scale image upsampler – GigaGAN. Sim-
ply inflating GigaGAN to a video model by adding temporal modules
produces severe temporal flickering. We identify several key issues and
propose techniques that significantly improve the temporal consistency
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of upsampled videos. Our experiments show that, unlike previous VSR
methods, VideoGigaGAN generates temporally consistent videos with
more fine-grained appearance details. We validate the effectiveness of
VideoGigaGAN by comparing it with state-of-the-art VSR models on
public datasets and showcasing video results with 8× super-resolution.

1 Introduction

Video super-resolution (VSR) is a classical but challenging task in computer
vision and graphics, aiming to recover high-resolution videos from their low-
resolution counterparts. VSR has two main challenges. The first challenge is
to maintain temporal consistency across output frames. The second challenge
is to generate high-frequency details in the upsampled frames. Previous ap-
proaches [6–8, 20] focus on addressing the first challenge and have shown im-
pressive temporal consistency in upsampled videos. However, these approaches
often produce blurry results and fail to produce high-frequency appearance de-
tails or realistic textures (see Fig. 2). An effective VSR model needs to generate
plausible new contents not present in the low-resolution input videos. Current
VSR models, however, are limited in their generative capability and unable to
hallucinate detailed appearances.

Generative Adversarial Networks (GANs) [13] have shown impressive genera-
tive capability on the task of image super-resolution [50,51]. These methods can
effectively model the distribution of high-resolution images and generate fine-
grained details in upsampled images. GigaGAN [21] further increases the gener-
ative capability of image super-resolution models by training a large-scale GAN
model on billions of images. GigaGAN can generate highly detailed textures even
for 8× upsampling tasks. However, applying GigaGAN or other GAN-based im-
age super-resolution models to each low-resolution video frame independently
leads to severe temporal flickering and aliasing artifacts (see Fig. 2). In this
work, we ask – is it possible to apply GigaGAN for video super-resolution while
achieving temporal consistency in upsampled videos?

We first experiment with a baseline of inflating the GigaGAN by adding
temporal convolutional and attention layers. These simple changes alleviate the
temporal inconsistency, but the high-frequency details of the upsampled videos
are still flickering over time. As blurrier upsampled videos inherently exhibit bet-
ter temporal consistency, the capability of GANs to hallucinate high-frequency
details contradicts the goal of VSR in producing temporally consistent frames.
We refer to this as the consistency-quality dilemma in VSR. Previous VSR ap-
proaches use regression-based networks to trade high-frequency details for bet-
ter temporal consistency. In this work, we identify several key issues of apply-
ing GigaGAN for VSR and propose techniques to achieve detailed and tempo-
rally consistent video super-resolution. Naively inflating GigaGAN with tempo-
ral modules [16] is not sufficient to produce temporally consistent results with
high-quality frames. To address this issue, we employ a recurrent flow-guided fea-
ture propagation module to encourage information aggregation across different
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Fig. 2: Limitations of previous methods. Previous VSR approaches such as
BasicVSR++ [7] suffer from lack of details, as seen from the car example. Image
GigaGAN produces sharper results with richer details, but it generates videos with
temporal flickering and artifacts like aliasing (see building). Our VideoGigaGAN can
produce video results with both high-frequency details and temporal consistency
while artifacts like aliasing are significantly mitigated.

frames. We also apply anti-aliasing blocks in GigaGAN to address the tempo-
ral flickering caused by the aliased downsampling operations. Furthermore, we
introduce an effective method for injecting high-frequency features into the Giga-
GAN decoder, called high-frequency (HF) shuttle . The proposed high-frequency
shuttle can effectively add fine-grained details to the upsampled videos while
mitigating aliasing or temporal flickering.

Contributions. We present VideoGigaGAN, the first large-scale GAN-based model
for video super-resolution. We recognize the consistency-quality trade-off that
has not been well discussed in previous VSR literature. We introduce the fea-
ture propagation module, anti-aliasing blocks and HF shuttle which significantly
improve the temporal consistency when applying GigaGAN for VSR. We show
that VideoGigaGAN can upsample videos with much more fine-grained details
than state-of-the-art methods evaluated on multiple datasets. We also show that
our model can produce detailed and temporally consistent videos even for chal-
lenging 8× upsampling tasks.

2 Related Work

Video Super-Resolution. Significant work has been invested in video super-
resolution, using sliding-window approaches [5, 28, 45, 47, 48, 55] and recurrent
networks [18–20, 27, 29, 30, 42, 43]. BasicVSR [6] summarizes the common VSR
approaches into a unified pipeline. It proposes an effective baseline using opti-
cal flow for temporal alignment and bidirectional recurrent networks for feature
propagation. BasicVSR++ [7] redesigns BasicVSR by introducing second-order
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grid propagation and flow-guided deformable alignment. To improve the gener-
alizability on real-world low-resolution videos, methods like RealBasicVSR [8]
and FastRealVSR [54] use diverse degradations as data augmentation during
training. While these approaches can produce temporally consistent upsampled
videos, they are often trained with simple regression objectives and lack the
generative capability, which leads to unrealistic textures and overly blurry re-
sults. Unlike previous VSR approaches, we propose a GAN-based VSR model to
generate high-frequency details while maintaining temporal consistency in the
upsampled videos.
GAN-based Image Super-Resolution. SRGAN [25] is a seminal image
super-resolution work that uses a GAN framework to model the manifold of
high-resolution images. ESRGAN [51] further enhances the visual quality of
upsampled images by improving the architecture and loss of SRGAN. Real-
ESRGAN [50] extends ESRGAN to restore general real-world low-resolution
images. While these methods can produce impressive results, they are still lim-
ited in model capacity and unsuitable for large upsampling factors. To scale up
the model capacity of GANs, GigaGAN [21] introduces filter bank and attention
layers to StyleGAN2 [23] and trains the model on billions of images. Even for
8× image super-resolution tasks, GigaGAN can effectively generate new con-
tent not present in the low-resolution image and produce realistic textures and
fine-grained details.
Generative Video Models. Many video generation works are based on the
VAEs [1,26,56], GANs [10,44,60], and autoregressive models [52]. LongVideoGAN
[4] introduces a sliding-window approach for video super-resolution, but it is re-
stricted to datasets with limited diversity. Recently, diffusion models have shown
diverse and high-quality results in video generation tasks [2,3,11,12,17]. Imagen
Video [16] proposes pixel diffusion models for video super-resolution. Concur-
rent work Upscale-A-Video [63] adds temporal modules to a latent diffusion
image upsampler [39] and finetunes it as a video super-resolution model. Unlike
diffusion-based video super-resolution models that require iterative denoising
processes, our VideoGigaGAN can generate outputs in a single feedforward pass
with faster inference speed.

3 Method

Our VSR model G upsamples a low-resolution (LR) video v ∈ RT×h×w×3 to a
high-resolution (HR) video V = G(v), where V ∈ RT×H×W×3, with an upsam-
pling scale factor α such that H = αh, W = αw. We aim to generate HR videos
with both high-frequency appearance details and temporal consistency.

We present the overview of our VSR model, VideoGigaGAN, in Fig. 3. We
start with the large-scale GAN-based image upsampler – GigaGAN [21] (Sec-
tion 3.1). We first inflate the 2D image GigaGAN upsampler to a 3D video
GigaGAN upsampler by adding temporal convolutional and attention layers
(Section 3.2). However, as shown in our experiments, the inflated GigaGAN
still produces results with severe temporal flickering and artifacts, likely due to
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Fig. 3: Overview of our method for 4× upsampling. Our Video Super-Resolution
(VSR) model is built upon the asymmetric U-Net architecture of the image
GigaGAN upsampler [21]. To enforce temporal consistency, we first inflate the image
upsampler into a video upsampler by adding temporal attention layers into the
decoder blocks. We also enhance consistency by incorporating the features from the
flow-guided propagation module. To suppress aliasing artifacts, we use
Anti-aliasing block in the downsampling layers of the encoder. Lastly, we directly
shuttle the high frequency features via skip connection to the decoder layers to
compensate for the loss of details in the BlurPool process.

the limited spatial window size of the temporal attention. To this end, we intro-
duce flow-guided feature propagation (Section 3.3) to the inflated GigaGAN to
better align the features of different frames based on flow information. We also
pay special attention to anti-aliasing (Section 3.4) to further mitigate the tem-
poral flickering caused by the downsampling blocks in the GigaGAN encoder,
while maintaining the high-frequency details by directly shuttling the HF fea-
tures to the decoder blocks (Section 3.5). Our experimental results validate the
importance of these model design choices.

3.1 Preliminaries: Image GigaGAN upsampler

Our VideoGigaGAN builds upon the GigaGAN image upsampler [21]. Giga-
GAN scales up the StyleGAN2 [23] architecture using several key components,
including adaptive kernel selection for convolutions and self-attention layers. The
GigaGAN image upsampler has an asymmetric U-Net architecture consisting of
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3 downsampling blocks {Ei} and 3 + k upsampling decoder blocks {Di}.

X = G(x, z) = D(E(x, z), z)

= Dk+2 ◦ · · ·D3︸ ︷︷ ︸
↑×2k

◦D2 ◦D1 ◦D0︸ ︷︷ ︸
↑×8

◦E2 ◦ E1 ◦ E0(x, z)︸ ︷︷ ︸
↓×8

. (1)

This GigaGAN upsampler is able to upsample an input image by 2k. Both en-
coder E and decoder D blocks utilize random spatial noise z as a source of
stochasticity. The decoder D contains spatial self-attention layers. The encoder
and decoder block at same resolution are connected by skip connections.

3.2 Inflation with temporal modules

To adapt a pretrained 2D image model for video tasks, a common approach
is to inflate 2D spatial modules into 3D temporal ones [3, 11, 16, 53, 57, 63]. To
reduce the memory cost, instead of directly using 3D convolutional layers in
each block, our temporal module uses a 1D temporal convolution layer that only
operates on the temporal dimension of kernel size 3, followed by a temporal self-
attention layer with no spatial receptive field. Both 1D temporal convolution and
temporal self-attention are inserted after the spatial self-attention with residual
connection [16]. In summary, at each block Di, we first process the features of
individual video frames using the spatial self-attention layer and then jointly
processed by our temporal module. Through our experiment, we find adding
temporal modules to the decoder D of the generator G is sufficient to improve
video consistency. We also inflate the discriminator D with comparable temporal
modules.

We follow [59] to initialize both temporal convolutions and temporal self-
attention layers with zero weights, such that G and D still perform the same
as an image upsampler at the beginning of the training, leading to a smoother
transition to a video upsampler.

3.3 Flow-guided feature propagation

The temporal modules alone are insufficient to ensure temporal consistency,
mainly due to the high memory cost of the 3D layers. For input videos with long
sequences of frames, one could partition the video into small, non-overlapping
chunks and apply temporal attention. However, this leads to temporal flickering
between different chunks. Even within each chunk, the spatial window size of
the temporal attention is limited, meaning a large motion (i.e., exceeding the
receptive field) cannot be modeled by the attention module (see Fig. 5).

To address these issues, we augment the input image with features aligned by
optical flow. Specifically, we introduce a recurrent flow-guided feature propaga-
tion module (see Fig. 3) prior to the inflated GigaGAN, inspired by BasicVSR++
[7]. Instead of directly using the LR video as input to the inflated GigaGAN, we
use the temporal-aware features produced by the flow-guided propagation mod-
ule. It comprises a bi-directional recurrent neural network (RNN) [6, 7] and an
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image backward warping layer. We initially employ the optical flow estimator to
predict bi-directional optical flow maps from the input LR video. Subsequently,
these maps and the original frame pixels are fed into the RNN to learn temporal-
aware features. Finally, these features are explicitly warped using the backward
warping layer, guided by the pre-computed optical flows, before being fed into
the later inflated GigaGAN blocks. The flow-guided propagation module can ef-
fectively handle large motion and produce better temporal consistency in output
videos, as demonstrated in Fig 5.

During training, we jointly train the flow-guided feature propagation mod-
ule and the inflated GigaGAN model. At inference time, given an input LR
video with an arbitrary number of frames, we first generate frame features using
the flow-guided propagation module. We then partition the frame features into
non-overlapping chunks and independently apply the inflated GigaGAN on each
chunk. Since the features inside each chuck are aware of the other chunks, thanks
to the flow-guided propagation module, the temporal consistency between con-
secutive chunks is preserved well.

3.4 Anti-aliasing blocks

With both temporal and feature propagation modules enabled, our VSR model
can process longer videos and produce results with better temporal consis-
tency. However, the high-resolution frames remain flickering in areas with high-
frequency details (for example, the windows in the building in Fig. 2). We iden-
tify that the downsampling operations in the GigaGAN encoder contribute to
the flickering of those regions. The high-frequency components in the input can
easily alias into lower frequencies due to the downsampling rate not meeting
the classical sampling criterion [37]. The aliasing of pixels manifests as tem-
poral flickering in video super-resolution. Previous VSR approaches often use
regression-based objectives, which tend to remove high-frequency details. Con-
sequently, these methods produce output videos free of aliasing. However, in our
GAN-based VSR framework, the GAN training objectives favor the hallucination
of high-frequency details, making aliasing a more severe problem.

In the GigaGAN upsampler, the downsampling operation in the encoder is
achieved by strided convolutions with a stride of 2. To address the aliasing issue
in our output video, we apply BlurPool layers to replace all the strided convolu-
tion layers in the upsampler encoder inspired by [61]. More specifically, during
downsampling, instead of simply using a strided convolution, we use convolution
with a stride of 1, followed by a low-pass filter and a subsampling operation.
We show the anti-aliasing blocks in Fig. 3. Our experiments show that the anti-
aliasing downsampling blocks perform significantly better than naive strided
convolutions in preserving temporal consistency for high-frequency details. We
also experimented with StyleGAN3 blocks for anti-aliasing upsampling [22]. The
temporal flickering is mitigated, but we observed a notable drop in frame quality.
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3.5 High-frequency shuttle

With the newly introduced components, the temporal flicker in our results is sig-
nificantly suppressed. However, as shown in Fig. 5, adding the flow-guided propa-
gation module (Section 3.3) leads to a blurrier output. Anti-aliasing blocks (Sec-
tion 3.4) make the results even blurrier. We still need the high-frequency infor-
mation in the GigaGAN features to compensate for the loss of high-frequency de-
tails. However, as discussed in Section 3.4, the traditional flow of high-frequency
information in GigaGAN leads to aliased output.

We present a simple yet effective approach to address the conflict of high-
frequency details and temporal consistency, called high-frequency shuttle (HF
shuttle). To guide where the high-frequency details should be inserted, the HF
shuttle leverages the skip connections in the U-Net and uses a pyramid-like
representation for the feature maps in the encoder. More specifically, at the
feature resolution level i, we decompose the feature map fi into low-frequency
(LF) feature and high-frequency (HF) components. The LF feature map fLF

i is
obtained via the low-pass filter mentioned in Section 3.4, while the HF feature
map is computed from the residual as fHF

i = fi − fLF
i . The HF feature map

fHF
i containing high-frequency details are injected through the skip connection

to the decoder (Fig. 3). Our experiments show that the high-frequency shuttle
can effectively add fine-grained details to the upsampled videos while mitigating
issues such as aliasing or temporal flickering.

3.6 Loss functions

We use stardard, non-saturating GAN loss [14], R1 regularization [34], LPIPS [62]
and Charbonnier loss [9] during the training.

L(Xt,xt) = µGANLGAN (G(xt),D(G(xt))) + µR1LR1(D(Xt))

+ µLPIPSLLPIPS(Xt,xt) + µCharLChar(Xt,xt) ,
(2)

where Charbonnier loss is a smoothed version of pixelwise ℓ1 loss, µGAN , µR1,
µLPIPS , µChar are the scales of different loss functions. xt is one of the LR input
frames, Xt is the corresponding ground-truth HR frame. We average the loss
over all the frames in a video clip during the training.

4 Experimental Results

4.1 Setup

Datasets. We strictly follow two widely used training sets from previous VSR
works [6,7,33]: REDS [36] and Vimeo-90K [55]. The REDS dataset contains
300 video sequences. Each sequence consists of 100 frames with a resolution of
1280× 720. We use REDS4 as our test set and REDSval4 as our validation set;
the rest of the sequences are used for training. The Vimeo-90K contains 64, 612
sequences for training and 7, 824 for testing (known as Vimeo-90K-T). Each
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Input BasicVSR [6] TTVSR [33] BasicVSR++ [7] Ours GT

28.01/0.1916 28.51/0.1696 28.65/0.1746 26.04/0.1498

34.07/0.2138 34.06/0.2094 34.11/0.2100 32.38/0.1326

38.44/0.1260 38.54/0.1237 38.94/0.1221 36.72/0.0908

Fig. 4: Qualitative comparison with other baselines on public datasets
(REDS4 [36], Vimeo-90K-T [55]. We show PSNR/LPIPS below each output
frame. PSNR does not align well with human perception and favor blurry results.
LPIPS is a preferred metric that aligns better with human perception. Compared to
previous VSR approaches, our model can produce more realistic textures and more
fine-grained details.

sequence contains seven frames with a resolution of 448×256. Following previous
works [6, 7], we compute the metrics only on the center frame of each sequence.
In addition to the official test set Vimeo-90K-T, we also evaluate the model
on Vid4 [32] and UDM10 [58], with different degradation algorithms (Bicubic
Downsampling – BI and Blur Downsampling – BD). We follow MMagic [35] to
perform degradation algorithms. All data are 4× downsampled to generate LR
frames following standard evaluation protocols [6, 7].

Evaluation metrics. We are interested in two aspects of our evaluation: per-
frame quality and temporal consistency. For per-frame quality, we use PSNR,
SSIM, and LPIPS [62]. We report SSIM scores in the supplementary material.
For temporal consistency, the warping error Ewarp [24] is commonly used.

Ewarp(X̂t, X̂t+1) =
1∑
M i

t

∑
M i

t ||X̂i
t,W (X̂i

t+1,Ft→t+1)||22 , (3)

where (X̂t, X̂t+1) are generated frames at time t and t + 1, i is the index of
the i-th pixel, and W (·) is the warping function, Ft→t+1 is the forward flow
estimated from the generated frames (X̂t, X̂t+1) using RAFT [46], and Mt ∈
{0, 1} is a non-occlusion mask indicating non-occluded pixels [40]. However, as
reported in Table 2, previous baselines such as BasicVSR++ or even simple
bicubic upsampling achieve lower Ewarp than ground truth high-resolution video

https://videogigagan.github.io/assets/supp.pdf
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Fig. 5: Ablation study. Starting from the inflated GigaGAN (+Temporal attention
in the figure), we progressively add components to demonstrate its effectiveness. With
temporal attention, the local temporal consistency is improved compared to using
image GigaGAN to upsample each frame independently. The global temporal
consistency improves with feature propagation, but aliasing still exists in the areas
with high-frequency details (please refer to the videos in the project website). Also,
the video results become more blurry. By using the anti-aliasing blocks – BlurPool,
the aliasing issue is much better, but the video results become even more blurry.
Finally, with HF shuttle, we can bring the per-frame quality and high-frequency
details back while preserving good temporal consistency.

since Ewarp favors over-smoothed results. Consider an extreme algorithm where
all the generated frames are entirely black. Ewarp computes the warping errors by
warping the generated frames. The warping error for this algorithm is 0 since the
generated frames are over-smoothed (in this extreme case, all black). Therefore,
instead of warping the generated frames, we propose to warp the ground-truth
frames using the flow computed on the generated frames. We refer to this new
warping error as referenced warping error Eref

warp. The referenced warping
error between two frames is

Eref
warp(Xt,Xt+1) =

1∑
M i

t

∑
M i

t ||Xi
t,W (Xi

t+1,Ft→t+1))||22 , (4)

where (Xt,Xt+1) are ground-truth frames at time t and t + 1, Ft→t+1 is the
forward flow estimated from the generated frames (X̂t, X̂t+1) using RAFT
[46].

Hyperparameters. We use a pretrained 4× GigaGAN image upsampler as
our base model. It contains three downsampling blocks in the encoder and five
upsampling blocks in the decoder. The spatial self-attention layers are only used
in the first block of the decoder for memory efficiency. For the flow network,

https://videogigagan.github.io/
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we use a lightweight SpyNet [38]. For the low-pass filters, we use a kernel of
1
16 [1, 4, 6, 4, 1] before the downsampling. We set µGAN = 0.05, µR1 = 0.2048,
µLPIPS = 5, µChar = 10 in Eqn. 2. During training, we randomly crop a 64×64
patch from each LR input frame at the same location. We use 10 frames of
each video and a batch size of 32 for training. The batch is distributed into 32
NVIDIA A100 GPUs. We use a fixed learning rate of 5×10−5 for both generator
and discriminator. The total number of training iterations is 100, 000.

4.2 Ablation study

To demonstrate the effect of each proposed component, we progressively add
them one by one and evaluate them on the REDS4 dataset [36]. We report the
quantitative results in Table 1. We also present a qualitative comparison in Fig. 5.
We see that the flow-guided feature propagation brings a large LPIPS and
Eref

warp improvement compared to the temporal attention. This demonstrates
the effectiveness of the feature propagation contributing to the temporal consis-
tency. By further introducing BlurPool as the anti-aliasing block, the model
has a warping error drop but an LPIPS loss increase (also shown in Fig. 5).
Finally, by using HF shuttle, we can bring the LPIPS back with a slight loss
of temporal consistency. Though it is not reflected on the number clearly, we
observed that the sharpness of the frame improves significantly with the HF
shuttle (see in the x-t slice plot in Fig. 5). We strongly encourage the readers to
watch the videos in the project website.

Model LPIPS↓ Eref
warp ↓ (×10−3)

GigaGAN (base upsampler) 0.2031 2.497

+ Temporal attention 0.2029 2.462
+ Flow-guided propagation 0.1551 2.187
+ BlurPool 0.1621 2.152
+ High-freq shuttle 0.1582 2.177

Table 1: Ablation study. We use LPIPS to evaluate per-frame quality and
Eref

warp ↓ (×10−3) for temporal consistency. Starting from the image GigaGAN
(upsampling each frame independently with the image upsampler), we progressively
add components to demonstrate its effectiveness. The best number: bold. The second
best number: underline.

4.3 Comparison with previous models

We conduct extensive experiments by comparing with 9 models including Ba-
sicVSR++ [7] and TTVSR [33]. At this point we cannot include Upscale-A-
Video [63] since there is no available code. We report the quantitative comparison

https://videogigagan.github.io
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Method LPIPS↓ Ewarp ↓ (×10−3) Eref
warp ↓ (×10−3)

Bicubic 0.3396 1.161 2.4232

EDVR [49] 0.2097 1.521 2.1429
MuCAN [28] 0.2162 1.562 2.1574
BasicVSR [6] 0.2023 1.371 2.1220
IconVSR [6] 0.1939 1.379 2.2119
TTVSR [33] 0.1836 1.390 2.1178
BasicVSR++ [7] 0.1786 1.401 2.1206
Ours 0.1582 2.313 2.1773

Ground truth - 2.127 2.1272

Table 2: Comparison of VideoGigaGAN and previous VSR approaches in
terms of temporal consistency and per-frame quality. The commonly used
Ewarp for temporal consistency favors more blurry results. The naive BICUBIC
upsampling method achieves the lowest Ewarp. To address this issue, we propose to
use the referenced warping error Eref

warp for temporal consistency.

BI degradation BD degradation

REDS4 [36] Vimeo-90K-T [55] Vid4 [32] UMD10 [58] Vimeo-90K-T Vid4

TOFlow [55] -/27.98 -/33.08 -/25.89 -/36.26 -/34.62 -
RBPN [15] -/30.09 -/37.07 -/27.12 -/38.66 -/37.20 -
PFNL [58] -/29.63 -/36.14 -/26.73 -/38.74 - -/27.16
EDVR [49] 0.2097/31.05 -/37.61 -/27.35 -/39.89 -/37.81 -/27.85
MuCAN [28] 0.2162/30.88 0.1523/37.32 - - - -
BasicVSR [6] 0.2023/31.42 0.1616/37.18 0.2812/27.24 0.1148/39.96 0.1551/37.53 0.2555/27.96
IconVSR [6] 0.1939/31.67 0.1587/37.47 0.2739/27.39 0.1152/40.03 0.1531/37.84 0.2462/28.04
TTVSR [33] 0.1836/32.12 - - 0.1112/40.41 0.1507/37.92 0.2381/28.40
BasicVSR++ [7] 0.1786/32.39 0.1506/37.79 0.2627/27.79 0.1131/40.72 0.1440/38.21 0.2390/29.04
RVRT [31] 0.1727/32.74 0.1502/38.15 0.2500/27.99 0.1100/40.90 0.1465/38.59 0.2219/29.54

Ours 0.1582/30.46 0.1120/35.97 0.1925/26.78 0.1060/36.57 0.1129/35.30 0.1832/27.04

Table 3: Quantitative comparisons of VideoGigaGAN and previous VSR
approaches in terms of per-frame quality (LPIPS↓/PSNR↑) evaluated on
multiple datasets. We also report SSIM scores in the supplementary material.

of the per-frame quality in Table 3. We show the comparison of temporal consis-
tency for 6 of them in Table 2. Additionally, we provide qualitative comparisons
in Fig. 4.
Per-frame quality. As shown in Table 3, our LPIPS outperforms all the other
models by a large margin while showing a poorer performance of PSNR and SSIM
(for SSIM, please refer to supplementary material). We observe that PSNR and
SSIM do not align well with human perception and favor blurry results, as also
reported in the literature [21, 39, 41]. Thus we consider LPIPS [62] as our core
metric to evaluate per-frame quality as it is closer to the human perception. In
Fig. 4, it is noticeable that our model produces results with the most fine-grained
details. Previous approaches tend to predict blurry results with a critical loss of
details.
Temporal consistency. As observed in previous works [24], the widely used
warping error metric favors a more blurry video. This is also illustrated in the
Table 2. The simple bicubic upsampling method achieves the best performance
for the commonly used warping error, which is much better than the GT warping

https://videogigagan.github.io/assets/supp.pdf
https://videogigagan.github.io/assets/supp.pdf
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error. We proposed the referenced warping error (RWE) in Section 4.1 to address
the issue of warping error favoring blurry results. In terms of the referenced
warping error, our method is slightly worse than previous methods (0.05× 10−3

compared to BasicVSR++ [7]). The newly proposed RWE is more suitable
for evaluating the temporal consistency of upsampled videos. However, it is still
biased towards more blurry results as seen in Table 2 (several methods, including
BasicVSR, BasicVSR++, and TTVSR, are still better than the ground truth
high-resolution videos). We leave a better metric of VSR temporal consistency
for future works.

4.4 Analysis of the trade-off between temporal consistency and
frame fidelity

To better understand the trade-off between the temporal consistency and per-
frame quality, we include a visualization in Fig. 6. We can see that the previous
VSR approaches focus on achieving better temporal consistency, but this comes
with a sacrifice of per-frame quality (also see the qualitative comparisons in
Fig. 4). Unlike previous VSR approaches, our final model - VideoGigaGAN,
achieves a good balance between temporal consistency and per-frame quality.
Compared to the base model GigaGAN, our proposed components significantly
improve both the temporal consistency and per-frame quality by a large margin.

EDVR

MuCAN

BasicVSR

IconVSR

TTVSR
BasicVSR++

Ours(+BlurPool)

Ours(final)

Ours(+feature prop)

Ours(+temporal attn)

Ours (base model)

Fig. 6: Trade-off between per-frame quality (LPIPS↓) and temporal
consistency (RWE↓). Our final model achieves a good balance between the
temporal consistency and per-frame quality.
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#Params(M) Runtime(ms)

RBPN [15] 12.2 1507
EDVR [49] 20.6 378
BasicVSR [6] 6.3 63
IconVSR [6] 8.7 70
BasicVSR++ [7] 7.3 77

Ours 369 295
Table 4: Comparison of model sizes and runtimes. We compute runtimes per
frame on 320× 180 to 1280× 720 on REDS4 [36]. Our VideoGigaGAN model has a
competitive runtime with a larger model size.

4.5 Model sizes and runtimes

We show the model sizes and runtimes for different models in Table 4. Our model
has a large size for its generative capacity, and still has a competitive inference
speed compared to previous feedforward VSR methods. Unlike diffusion-based
video super-resolution models [16,63] that require iterative denoising processes,
our VideoGigaGAN can generate outputs in a single feedforward pass with much
faster inference speed. We also experimented with scaling previous feed-forward
models such as BasicVSR++ [7]. However, previous VSR models do not have
good scalability and show unstable training when scaling up as also discussed
in [21].

4.6 8× video upsampling

Our model is capable for 8x video upsampling with both good temporal consis-
tency and per-frame quality with rich details. We encourage readers to visit our
project website for more results.

5 Limitations

Our model encounters challenges when processing extremely long videos (e.g.,
200 frames or more). This difficulty arises from misguided feature propagation
caused by inaccurate optical flow in such extended video sequences. Additionally,
our model does not perform well in handling small objects, such as text and
characters, as the information pertaining to these objects is significantly lost in
the LR video input. Examples of these failure cases are illustrated in Fig. 7.

6 Conclusions

We present a novel generative VSR model, VideoGigaGAN, that can upsample
input low-resolution videos to high-resolution videos with both high-frequency

https://videogigagan.github.io/
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(a) Extremely long video (b) Small objects

Fig. 7: Limitations. Our approach has some limitations. (a) When the video is
extremely long, the feature propagation becomes inaccurate, which may introduce
undesired artifacts like incorrect propagated patterns. (b) Our model cannot handle
well small objects, e.g., small characters.

details and temporal consistency. Previous VSR approaches often use regression-
based networks and tend to generate blurry results. To this end, our VSR model
built upon the powerful generative image upsampler – GigaGAN. We identify
several issues when applying GigaGAN to video super-resolution tasks including
temporal flickering and aliased artifacts. To address these issues, we introduce
new components to the GigaGAN architecture that can effectively improve both
the temporal consistency and per-frame quality. Our results demonstrate that
VideoGigaGAN strike a balance in addressing the consistency-quality dilemma
of VSR compared to previous methods.
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